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Abstract— Finite element analysis procedures for predicting 
temperature response and associated thermal stress and buckling 
to 2D thermal structural analysis of advanced composite plates 
and shells are presented. Thermal analyses of structures are 
usually performed with non-consistent tools leading to an 
excessive effort in data adaptation. The application of 2D finite 
elements for this task relaxes this deficiency. With thermal 
composite theories, the temperature profile is assumed linear or 
quadratic in the thickness direction, but it is calculated by 
solving the Fourier’s heat conduction equation. Finite element 
program has been developed using Semiloof shell elements and 
same eight noded isoparametric element concept for steady-state 
heat transfer. Results are verified for heat transfer, thermal 
stress and buckling analysis. New results are presented in terms 
of temperature, thermal stress and buckling for advanced 
composite plates. The results from this paper are to be useful 
mainly in nuclear reactor vessels and Thermal Protection System 
(TPS) in defence application. 
 
Keywords— Thermal structural analysis; Composite plates and 
shells; Semiloof shell element; Temperature; Thermal stress 

I. INTRODUCTION 
In our country, for the application of defence purpose, 

spacecraft structures play a vital role. A re-entry vehicle 
encounters enormous aerodynamic heating, the rate of which 
depends on the type of mission. Solid rocket motors are the 
main source of power for rockets. Many of the operational 
satellite launch vehicles and missiles around the world depend 
on solid motors for their propulsion during the initial phase of 
flight. The testing methodologies being adopted at ISRO for 
qualifying these materials from the structural integrity point of 
view are listed [1]. As the temperature increases, the TPS 
material begins to decompose. Thus, the design of suitable 
thermal protection system (TPS) becomes necessary for their 
successful operation. Noack et al., [2] used 4-noded shell 
elements to find thermal stress with a layer-wise theory for 
heat conduction problem using hybrid structures. In rapid 
acceleration of aircraft to a very high speed, friction in the 
boundary layer may raise the temperature of the surface of the 
aircraft with sufficient rapidity that large temperature 
differential may occur in the structure before interior positions 
heat up. This may result in thermal stresses of considerable 
magnitude [3].   

The heat-transfer into the surface of the aircraft may be 
treated in a manner similar to conductive heat-transfer in low-
speed flow. An appropriate heat-transfer coefficient is used in 
conjunction with the difference between the temperature at the 

solid surface and so-called “adiabatic wall temperature” or the 
temperature which would be attained in air at the solid surface 
if the surface was insulated. The heat-transfer coefficient and 
adiabatic wall temperature depend on the properties of the 
ambient air, the velocity of flow outside the boundary layer. 
During the initial phase of the trajectory, the aerodynamic heat 
generated on the body goes primarily to increase the body 
temperature, that is, the body behaves like a heat sink. Thus, 
the concept of boundary layer is very useful in heat-transfer 
problems [4] associated with aerodynamic heating. Yangjian 
et al., [5] studied analytically about convective heat transfer 
and thermal stress using FGM and composite materials for the 
plate.  

In the last few decades, various TPS materials have been 
evolved. But, usage of the composite in all fields have been 
increased drastically now-a-days, because of their less weight 
and high stiffness property. Rolfes and Rohwer [6] analysed 
2D finite elements for both laminated plates and cylindrical 
shells. So far, a lot of researches have been carried out about 
mechanical and thermo-mechanical behaviour of composite 
laminates [7] while very few works are available about 
integrated thermal structural analysis. Among various 
materials, Carbon-carbon composites, which are ceramic 
composites can withstand load beyond 2000℃. And carbon 
fibre reinforced polyimides have recently been used on 
radomes and fins operating at high temperatures for short and 
long duration because polyimides have high-temperature 
strength retention properties compared to epoxies and 
phenolics. Carbon-carbon composites have been successfully 
employed in the brake discs of aircraft, rocket nozzles and 
several other components operating in extreme thermal 
environments.  

Kayhani et al [8] present an exact general solution for 
steady-state conductive heat transfer in cylindrical composite 
laminates. Bouazza and Amara [9] analysed three-dimensional 
thermo-elastic analysis of laminated plates subjected to 
uniform mechanical and thermal loads. Thus, deflections and 
stress resultants are obtained for symmetric and anti-
symmetric cross-ply laminates for simply-supported boundary 
conditions at different temperatures. Closed-form 
formulations of a 2D higher-order shear deformation theory 
are presented by Khare [10] for the analysis of simply 
supported composite and sandwich laminated doubly curved 
shells under thermo-mechanical loading conditions. Sen [11] 
studied about elastoplastic thermal stresses in a thermoplastic 
composite disc that is reinforced by steel fibres, curvilinearly. 
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Zhang and Yang [12] reviewed the recent development of the 
finite element analysis for laminated composite plates and 
summarised the future research areas. Plates and shells with 
different lamination and boundary conditions are analysed 
using high-order theories by Cinefra et al., [13]. 

The present work is concerned with the study of steady-
state heat transfer for conduction problems in high-speed 
aerospace structures made of isotropic material using semiloof 
shell element. Semiloof shell element was developed by Irons 
[14] utilising isoparametric concept and isoparametric shell 
theory based on eight-noded element. In this work same 
isoparametric element is used to determine nodal temperature 
distribution. The semiloof element is extended to thermal 
stress analysis of laminated composite plates and shells by 
Thangaratnam et al [15]. Laminates with different fibre 
orientation have been considered in this analysis and the 
results are compared with the isotropic plate. The program 
developed COMSAP has been validated by comparing with 
the available results. The results are presented in terms of 
temperature, displacement and thermal stress. 

II. FINITE ELEMENT FORMULATION 
In thermal analysis, the method of weighted residuals is 

frequently employed starting from the governing differential 
equations. 

 
Fig. 1  3D solution domain for general heat conduction. 

Fig. 1 shows several types of boundary conditions 
frequently encountered in the analysis. These boundary 
conditions are [16],  
specified surface temperatures, T = Ts on S1                (1) 
surface heating,  qxnx+qyny+qznz = -qs on S2    

                 (2) 
surface convection, qxnx+qyny+qznz = ℎ(𝑇𝑇𝑇𝑇 −  𝑇𝑇∞) on S3       
(3) 
surface radiation qxnx+qyny+qznz = 𝜀𝜀𝜀𝜀(𝑇𝑇𝑇𝑇4 − 𝑇𝑇∞−4)−∝ 𝑞𝑞𝑟𝑟   on 
S4                                                 (4) 

where T, is the specified surface temperature; nx, ny, nz are 
the direction cosines of the outward normal to the surface, qs 
is the surface heating rate unit area, h is the convection 
coefficient, 𝑇𝑇∞  is the convective medium temperature, 𝜀𝜀 is the 
Stefan-Boltzmann constant, 𝜀𝜀is the surface emissivity, ∝is the 
surface absorptivity, and qr is the incident radiant heat flow 
rate per unit area. 

Semiloof shell element  which has all the advantages of 
isoparametric formulation and which uses isoparametric shell 

theory and Discrete Kirchhoff Theory can overcome the 
locking phenomenon was developed by Irons [14] is used. 

The governing differential equation for a 2D heat 
conduction problem is given by: 
[C]{𝑇𝑇}̇ + [[𝐾𝐾𝑐𝑐] + [𝐾𝐾ℎ]] {T} = {𝑄𝑄𝑄𝑄} + �𝑄𝑄𝑞𝑞��𝑄𝑄ℎ�                    (5) 

Where, [C]is the element capacitance matrix; [Kc] and 
[ 𝐾𝐾ℎ] are element conductance matrices corresponding to 
conduction and convection respectively. [𝑄𝑄𝑄𝑄], [𝑄𝑄ℎ] and [𝑄𝑄𝑞𝑞] 
are load vector due to internal heat generation, convection and 
specified surface heating. 

The element matrices for analysing heat transfer problems 
are summarized herein. 
[C] = ∫ ∫ 𝜌𝜌𝑐𝑐 

1

−1

1

−1
[N(𝜀𝜀, 𝜂𝜂)]𝑇𝑇[N(𝜀𝜀, 𝜂𝜂)] t |J|d 𝜀𝜀 𝑑𝑑𝜂𝜂                      (6) 

[𝐾𝐾𝑐𝑐] = ∫ ∫ [B(𝜀𝜀, 𝜂𝜂)]𝑇𝑇
1

−1

1

−1
 [𝑘𝑘][B(𝜀𝜀, 𝜂𝜂)]t |J|d 𝜀𝜀 𝑑𝑑𝜂𝜂                      (7) 

[𝐾𝐾ℎ]=∫ ∫  ℎ
1

−1

1

−1
[N(𝜀𝜀, 𝜂𝜂)]𝑇𝑇[N(𝜀𝜀, 𝜂𝜂)]|J|d 𝜀𝜀 𝑑𝑑𝜂𝜂                          (8) 

[𝑄𝑄𝑄𝑄] = ∫ ∫  𝑄𝑄
1

−1

1

−1
[N(𝜀𝜀, 𝜂𝜂)]𝑇𝑇t |J|d 𝜀𝜀 𝑑𝑑𝜂𝜂                                       (9) 

[𝑄𝑄𝑞𝑞] = ∫ ∫ 𝑞𝑞𝑇𝑇
1

−1

1

−1
[N(𝜀𝜀, 𝜂𝜂)]𝑇𝑇|J|d 𝜀𝜀 𝑑𝑑𝜂𝜂                                       (10) 

[𝑄𝑄ℎ] = ∫ ∫  ℎ 𝑇𝑇∞
1

−1

1

−1
[N(𝜀𝜀, 𝜂𝜂)]𝑇𝑇|J|d 𝜀𝜀 𝑑𝑑𝜂𝜂                                 (11) 

Where, 𝜌𝜌 is mass density,[N(𝜀𝜀, 𝜂𝜂)] is shape function for 8 
noded isoparametric element, t is thickness,|J| is determinant 
of jacobian, 

[B(𝜀𝜀, 𝜂𝜂)] = �𝐽𝐽11 𝐽𝐽12
𝐽𝐽21 𝐽𝐽22

� �
𝜕𝜕𝑁𝑁1
𝜕𝜕𝜀𝜀

𝜕𝜕𝑁𝑁2
𝜕𝜕𝜀𝜀

… 𝜕𝜕𝑁𝑁8
𝜕𝜕𝜀𝜀

𝜕𝜕𝑁𝑁1
𝜕𝜕𝜂𝜂

𝜕𝜕𝑁𝑁2
𝜕𝜕𝜂𝜂

… 𝜕𝜕𝑁𝑁8
𝜕𝜕𝜂𝜂

�                         (12) 

The conductivity matrix for the composite laminate[𝑘𝑘] is, 

[𝑘𝑘] = �
𝑘𝑘𝑥𝑥 0
0 𝑘𝑘𝑦𝑦

�                                                                           (13) 

The x and y axis conductivities 𝑘𝑘𝑥𝑥  and 𝑘𝑘𝑦𝑦are related to the 
longitudinal and lateral axis conductivities k11and k22 [17] 
respectively through the relation proposed by Shen and 
Springer [18], expressed as, 

kx = k11
∑ cos2 𝜃𝜃𝑘𝑘.ℎ𝑘𝑘
𝑛𝑛
𝑘𝑘=1

ℎ
+ k22

∑ sin2 𝜃𝜃𝑘𝑘.ℎ𝑘𝑘
𝑛𝑛
𝑘𝑘=1

ℎ
                                  (14) 

ky= k11
∑ sin2 𝜃𝜃𝑘𝑘.ℎ𝑘𝑘
𝑛𝑛
𝑘𝑘=1

ℎ
 + k22

∑ cos2 𝜃𝜃𝑘𝑘.ℎ𝑘𝑘
𝑛𝑛
𝑘𝑘=1

ℎ
                                      (15) 

     In the process of integration, Gauss-Legendre integration 
formula is used as,  
[C]= ∑ ∑ 𝑊𝑊𝑖𝑖𝑊𝑊𝑗𝑗  𝜌𝜌𝑐𝑐𝑁𝑁𝑁𝑁

𝑗𝑗=1
𝑁𝑁𝑁𝑁
𝑖𝑖=1   [N(𝜀𝜀𝑖𝑖 , 𝜂𝜂𝑖𝑖)]𝑇𝑇[N(𝜀𝜀𝑖𝑖, 𝜂𝜂𝑖𝑖)]�J�𝜀𝜀𝑖𝑖, 𝜂𝜂𝑖𝑖��                               

                         (16) 
 [𝐾𝐾𝑐𝑐]=∑ ∑ 𝑊𝑊𝑖𝑖𝑊𝑊𝑗𝑗 [B(𝜀𝜀𝑖𝑖, 𝜂𝜂𝑖𝑖)]𝑇𝑇𝑁𝑁𝑁𝑁

𝑗𝑗=1
𝑁𝑁𝑁𝑁
𝑖𝑖=1  [𝑘𝑘][B(𝜀𝜀𝑖𝑖, 𝜂𝜂𝑖𝑖)]t |J(𝜀𝜀𝑖𝑖 , 𝜂𝜂𝑖𝑖)|

                         (17) 
[𝐾𝐾ℎ]=∑ ∑ 𝑊𝑊𝑖𝑖𝑊𝑊𝑗𝑗  ℎ

𝑁𝑁𝑁𝑁
𝑗𝑗=1

𝑁𝑁𝑁𝑁
𝑖𝑖=1 [N(𝜀𝜀𝑖𝑖, 𝜂𝜂𝑖𝑖)]𝑇𝑇[N(𝜀𝜀𝑖𝑖, 𝜂𝜂𝑖𝑖)]|J(𝜀𝜀𝑖𝑖, 𝜂𝜂𝑖𝑖)|  (18) 

[𝑄𝑄𝑄𝑄]=∑ ∑ 𝑊𝑊𝑖𝑖𝑊𝑊𝑗𝑗 𝑄𝑄
𝑁𝑁𝑁𝑁
𝑗𝑗=1

𝑁𝑁𝑁𝑁
𝑖𝑖=1 [N(𝜀𝜀𝑖𝑖, 𝜂𝜂𝑖𝑖)]𝑇𝑇 𝑡𝑡�J�𝜀𝜀𝑖𝑖, 𝜂𝜂𝑖𝑖��                (19) 

[𝑄𝑄𝑞𝑞]=∑ ∑ 𝑊𝑊𝑖𝑖𝑊𝑊𝑗𝑗 𝑞𝑞𝑇𝑇
𝑁𝑁𝑁𝑁
𝑗𝑗=1

𝑁𝑁𝑁𝑁
𝑖𝑖=1  [N(𝜀𝜀𝑖𝑖, 𝜂𝜂𝑖𝑖)]𝑇𝑇�J�𝜀𝜀𝑖𝑖, 𝜂𝜂𝑖𝑖��                 (20) 

[𝑄𝑄ℎ]=∑ ∑ 𝑊𝑊𝑖𝑖𝑊𝑊𝑗𝑗 ℎ 𝑇𝑇∞
𝑁𝑁𝑁𝑁
𝑗𝑗=1

𝑁𝑁𝑁𝑁
𝑖𝑖=1 [N(𝜀𝜀𝑖𝑖, 𝜂𝜂𝑖𝑖)]𝑇𝑇|J�𝜀𝜀𝑖𝑖, 𝜂𝜂𝑖𝑖�               (21) 

Where,𝑊𝑊𝑖𝑖 ,𝑊𝑊𝑗𝑗   are weights and 𝜀𝜀𝑖𝑖 , 𝜂𝜂𝑖𝑖  are Gauss-point locations. 
Thus nodal temperature values can be found out from the 
equations (16) to (21).  
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Based on minimization of the potential energy, formulation 
 

П = ∑ ∫ 1
2

𝑚𝑚 �𝑒𝑒𝑘𝑘�
𝑇𝑇
�𝐴𝐴 𝐵𝐵
𝐵𝐵 𝐷𝐷� �

𝑒𝑒
𝑘𝑘� 𝑑𝑑𝑑𝑑 − ∫[𝑞𝑞]𝑇𝑇 [𝑑𝑑]𝑇𝑇[𝑝𝑝]𝑑𝑑𝑑𝑑 −

∫ �
𝑒𝑒
𝑘𝑘�

𝑇𝑇
�𝑁𝑁

𝑇𝑇

𝑀𝑀𝑇𝑇� 𝑑𝑑𝑑𝑑                                                                              (22) 

�
𝑒𝑒
𝑘𝑘�= [H] [q]                                                      (23)                                                                                                                                  

Where, [H] is the strain matrix.  
Substituting Eq. (23) in Eq. (22). 
П = ∑ ∫ 1

2
𝑚𝑚 [𝑞𝑞]𝑇𝑇[𝐻𝐻]𝑇𝑇[E][𝐻𝐻][𝑞𝑞]𝑑𝑑𝑑𝑑 − ∫[𝑞𝑞]𝑇𝑇 [𝑑𝑑]𝑇𝑇[𝑝𝑝]𝑑𝑑𝑑𝑑 −

∫[𝑞𝑞]𝑇𝑇[𝐻𝐻]𝑇𝑇 �𝑁𝑁
𝑇𝑇

𝑀𝑀𝑇𝑇� 𝑑𝑑𝑑𝑑                                                                      (24)                                                                                              

Where [E] =�𝐴𝐴 𝐵𝐵
𝐵𝐵 𝐷𝐷

�                                                   (24a)    
Differentiating the total potential energy with respect to nodal 
displacement [q] and equating to zero gives, 
П =
∑ ∫ 1

2
𝑚𝑚 [𝐻𝐻]𝑇𝑇[𝐸𝐸][𝐻𝐻][𝑞𝑞]𝑑𝑑𝑑𝑑 − ∫[𝑑𝑑]𝑇𝑇 [𝑝𝑝]𝑑𝑑𝑑𝑑 − ∫[𝐻𝐻]𝑇𝑇 �𝑁𝑁

𝑇𝑇

𝑀𝑀𝑇𝑇� 𝑑𝑑𝑑𝑑 = 0
                        (25)                                                                         
[KS][q] =[𝑓𝑓𝑚𝑚]+[𝑓𝑓𝑇𝑇]                                 (26)                                                                             
[𝑓𝑓𝑚𝑚] –Consistent nodal force vector due to mechanical load. 
�𝑓𝑓𝑚𝑚� = ∑∫[𝑑𝑑𝑇𝑇][𝑝𝑝] 𝑑𝑑𝑑𝑑          (27)                                                                                                                    
[fT]–Consistent Thermal load vector.  

[fT] = ∫[𝐻𝐻]𝑇𝑇 �𝑁𝑁
𝑇𝑇

𝑀𝑀𝑇𝑇� 𝑑𝑑𝑑𝑑          (28)    

[KS] –Structural Stiffness Matrix. 
[KS] = ∑∫[𝐻𝐻]𝑇𝑇 [𝐸𝐸][𝐻𝐻]𝑑𝑑𝑑𝑑        (29) 

III. VERIFICATION  

The existing program COMSAP [15] is extended for 
integrated thermal structural analysis to determine 
temperature distribution over the surface, displacement and 
resultant moment.  

An isotropic homogenous square plate of size (a) = 100cm 
and thickness (h) = 1cm subjected to linear thermal gradient 
across the thickness and uniform over the surface has been 
analysed. All the edges are simply supported. The quarter 
plate is modelled using 8-noded quadrilateral isoparametric 
semiloof shell element with 4x4 meshes. Normal 
displacement (W) and moment resultants (Mxx/MT), (Myy/MT) 
due to thermal loads in the plate along X-axis due to linear 
thermal gradient across thickness is compared as in Fig. 2 and 
3 respectively. The material properties are: E= 2x106 N/mm2, 
μ= 0.3, α= 2x10-6strain/℃ , Ttop = 100℃and Tbotttom=0℃, 
thermal moment resultant vector is given as MT=EαTh2/12.  

From fig 2, it has been observed that the maximum value 
of displacement (W) is found at the centre of plate and 
gradually decreases to zero at the edge. Moment resultant 
along X-axis (Mxx) decreases gradually, whereas moment 
resultant along Y-axis (Myy) increases gradually. Exact 
agreement is observed between Timoshenko (1961) [19] and 
the present result as shown in Fig. 2 and 3. 

 
Fig.2 Normal displacement Vs thermal gradient  

 
Fig.3 Moment resultants due to thermal loads  

IV. RESULTS AND DISCUSSION 
     An isotropic square plate of size (a) = 100cm and thickness 
(h) = 1cm subjected to linear thermal gradient uniformly over 
the surface has been analysed. The material properties are: E= 
2x106 N/mm2, μ= 0.3, α= 2x10-6strain/℃, Thermal 
conductivity coefficient in lateral direction k11 = 30, Thermal 
conductivity coefficient in transverse direction k22 = 30, 
Surrounding medium temperature 𝑇𝑇∞  = 50℃ , Internal heat 
generation [Q] = 10W/m3.The isotropic rectangular plate is 
analysed for different aspect ratio such as a/b = 1, 1.5, 2, 2.5 
and 3. The plate is simply supported on all the four sides, due 
to the symmetric condition quarter plate is modelled using 
4×4 mesh. 
 
     Temperature distribution, displacement and thermal stress 
has been found out using the developed program. The 
maximum temperature distribution for the semiloof shell 
element along X and Y is displayed in Fig. 4 a) and b).  

a) As the aspect ratio increases, the temperature also 
increases in both edges of x and y axis. 

b) The maximum value of temperature is found at the 
centre of plate and at the edge 𝑇𝑇∞ = 50℃ is 
maintained. 

c) Temperature decreases gradually from the centre of 
the plate to both the edges as shown in Fig.4 a) and 
b). 
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Fig 4. a) 

 
Fig 4. b) 

Fig.4 Variation of temperature for different aspect ratio along a) X-axis 
b) Y-axis 

 Fig 5. a) 

 
Fig 5. b) 

Fig.5 Variation of normal displacement along a) X-axis b) Y-axis 

 
Fig 6. Moment resultant Mx along X-axis for different aspect ratio 
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Fig.7 moment resultant My along X-axis for different aspect ratio  

The maximum displacement along X and Y axis is 
displayed in Fig. 5 a) and b).  
a) As the aspect ratio increases, the displacement also 

increases in both edges of x and y axis. 
b) The maximum value of displacement is found at the 

centre of plate and gradually decreases to zero at the 
edge. 

 The resultant moment along X and Y is displayed in 
Fig. 6 and 7.  
a) As the aspect ratio increases, the resultant moment 

Mx increases along x axis and My decreases along y 
axis. 

b) MTmax represents the maximum thermal resultant in 
the isotropic plate. 

c) The maximum value of moment is found at the 
centre of plate and gradually decreases to zero at the 
edge. 

 

V. CONCLUSION 
Integrated thermal structural analysis has been carried out 

using semiloof shell element and the program COMSAP is 
verified successfully. New results are obtained in terms of 
temperature, displacement and moment resultant. As the 
aspect ratio increases, temperature, displacement and resultant 
moment along X-axis also increases, except the resultant 
moment along Y-axis which decreases. The value of 
temperature, displacement and resultant moment is found 
maximum at the centre of the plate. Then, gradually decreases 
to zero at the edge of the isotropic plate. 
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